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While the majority of approaches to the characterization of complex networks has
relied on measurements considering only the immediate neighborhood of each network
node, valuable information about the network topological properties can be obtained by
considering further neighborhoods. The current work considers the concept of virtual
hierarchies established around each node and the respectively defined hierarchical node
degree and clustering coefficient (introduced in cond-mat/0408076), complemented by
new hierarchical measurements, in order to obtain a powerful set of topological features
of complex networks. The interpretation of such measurements is discussed, including
an analytical study of the hierarchical node degree for random networks, and the
potential of the suggested measurements for the characterization of complex networks
is illustrated with respect to simulations of random, scale-free and regular network
models as well as real data (airports, proteins and word associations). The enhanced
characterization of the connectivity provided by the set of hierarchical measurements
also allows the use of agglomerative clustering methods in order to obtain taxonomies
of relationships between nodes in a network, a possibility which is also illustrated in
the current article.

KEY WORDS: complex networks, hierarchical measurements, disordered systems,
networks and graphs

1. INTRODUCTION

Graph theory and statistical mechanics are well-established areas in mathe-
matics and physics, respectively. Since its beginnings in the XVIII century, with
the solution of the bridges problem by L. Euler, graph theory has progressed all
the way to the forefront of theoretical and applied investigations in mathematics
and computer science. Much of the importance of this broad area stems from
the generality of graphs as representational models. As a matter of fact, most
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discrete structures including matrices, trees, queues, among many others, are but
particular cases of graphs. The potential of graphs is further extended by models
where features are assigned to nodes, different types of nodes and/or edges are
allowed to co-exist, synchronization schemes are incorporated, and so on (see,
for instance, ref. 1). At the same time, statistical mechanics, also drawing on a
rich past of accomplishments, provides concepts and tools for bridging the gap
between dynamics in the micro and macro realms. Of particular interest have been
the investigations on phase transitions and complex systems, which represent a
major area of development today.

While graph theory provides effective means for characterizing, modeling
and simulating the structure of natural phenomena, statistical mechanics contains
the methods for analyzing the dynamics of natural phenomena along several scales.
The novel area of complex networks(1–3) can be understood as a fortunate inter-
section between those two major areas, therefore allowing a natural and powerful
means for integrating structure and dynamics. With origins extending back to the
pioneering developments of Flory,(4) Rapoport(5) and Erdös and Rényi,(6) the area
of complex networks was boosted more recently by the advances by Watts and
Strogatz(7, 8) and Barabási and collaborators.(9)

Complex network investigations frequently involve the measurement of topo-
logical features of the analyzed structures, such as the node degree (namely the
number of edges attached to a node) and the clustering coefficient (quantifying the
connectivity among the immediate neighbors of a node). Although degenerated, in
the sense that they do not allow a one-to-one identification of the possible network
architectures, such a pair of measurements does provide a rich characterization of
the connectivity of the networks. As a matter of fact, particularly interesting net-
work models, such as the small-world(1,3,7,8) and scale-free (Barabási-Albert),(1,3,9)

are characterized by high transitivity-short minimal paths and power law degree
distributions, respectively.

Although such distributions emphasize important properties of the analyzed
networks, further valuable topological information can be gathered not only by
considering the clustering coefficient, but also by analyzing such features along the
virtual hierarchical levels of the networks.(10, 11) While some attention has been
focused on the relevant issue of hierarchy in complex networks (e.g. refs. 12–
26), and virtual hierarchical extensions of the node degree and clustering coef-
ficient were only more recently formalized in refs. 10 and 11 by using concepts
derived from mathematical morphology(27–29) including dilations and distance
transforms in graphs. It is important to note that the term ‘hierarchical’ has been
used to indicate different topological features of the networks in some of the
above mentioned works. Despite their recent introduction, such concepts have
already yielded valuable results when applied to essentiality of protein-protein
interaction networks,(30) bone structure characterization,(31) and community
finding.(32, 33)
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The purpose of the current article is to review and further extend the con-
cepts of hierarchical measurements,2 which is done by the consideration of the
concepts of radial reference system and hierarchical common degree, as well as
the introduction of the measurements of hierchical edge degree, inter-ring degree,
intra-ring degree, convergence ratio, and emphedge clustering coefficient. The ex-
tensions of these measurement (excluding the clustering coefficient) to weighted
and directed networks are also described in this work. We start by presenting the
basic concepts and discussing hierarchies in complex networks in terms of vir-
tual nodes and proceed by describing, interpreting and discussing the hierarchical
measurements. An analytical characterization of the general shape of the hierar-
chical node degree in random networks is also presented, and the potential of the
reported concepts and methods is illustrated with respect to the characterization
of simulated random, scale-free and regular network models. Such a potential
is further illustrated with respect to real networks, including word associations,
airports, and protein-protein interactions. Because the hierarchical measurements
provide a rich characterization of the connectivity around each network node, it
becomes possible to use clustering methods(34,35) in order to organize the nodes
in a network into a taxonomical scheme reflecting the similarities between their
connectivity. This possibility is also illustrated in the present article.

2. NOTATION AND BASIC CONCEPTS

Let the graph or network � of interest contain N nodes and e edges, and the
connections between any two nodes i and j be represented as (i, j). Although non-
oriented graphs are assumed henceforth, all reported concepts and methods can be
immediately extended to digraphs and weighted networks. We henceforth assume
the complete absence of loops (i.e. self-connections). A non-oriented graph can
be completely specified in terms of its adjacency matrix K , with each connection
(i, j) implying K (i, j) = K ( j, i) = 1. The absence of a connection between nodes
i and j is represented as K (i, j) = K ( j, i) = 0. Now, the node degree k(i) of a
node i of � can be defined as

k(i) =
N∑

j=1

K (i, j) =
N∑

j=1

K ( j, i). (1)

Observe that the degree of node i corresponds to the number of edges attached
to that node, representing a direct measurement of the connectivity of that specific
node. Indeed the overall connectivity of a specific network can be quantified in

2 Although the measurements obtained for the virtual hierarchies established around each node could
be called virtual hierarchical measurements, for simplicity’s sake we henceforth adopt the shorthand
notation of hierarchical measurements.
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Fig. 1. Three situations yielding the same clustering coefficient (equal to 1) for the reference node i .

terms of its average node degree 〈k〉. While a random network is characterized by
a typical average node degree with relatively low standard deviation, a scale-free
model will present a power-law log-log distribution of node degrees, favoring the
existence of hubs (i.e. nodes with high node degree).

The clustering coefficient of a network node i can be defined as quantify-
ing the connectivity among the immediate neighbors of i , which are henceforth
represented by the set R1(i). More specifically, in case that node has n1(i) im-
mediate neighbors (i.e., the cardinality of R(i)), implying a maximum number
eT (i) = n1(n1 − 1)/2 of connections between such nodes, and e(i) connections
are observed among such neighbors, the clustering coefficient of i can be calcu-
lated as

cc(i) = e(i)

eT (i)
= 2

e(i)

n1(i)(n1(i) − 1)
. (2)

Observe that 0 ≤ cc(i) ≤ 1, with the minimum and maximum values be-
ing achieved for complete absence of connections (for cc(i) = 0) and complete
connectivity among the neighbors of i (for cc(i) = 1).

Although the clustering coefficient provides a powerful indication about the
connectivity among the neighbors of the reference node, several different situ-
ations (see Fig. 1) may yield the same clustering coefficient value (1 for these
examples), which is a consequence of the fact that this measurement is relative to
the total number of connections among the elements of S(i). Such situations can
be distinguished by considering the respective value of n1(i).

3. SIMPLE PATHS AND VIRTUAL HIERARCHIES

Consider the situation depicted in Fig. 2, where a reference node i = 1 is
connected to several other network nodes. The set of immediate neighbors of
i , hence R1(i), is identified by the innermost ellipsis. Observe that although no
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Fig. 2. A small network and a reference node i . The simple path between nodes i and j , one of the
many of such a kind in this network, is represented by the dashed line.

connection is observed between nodes i and j , information from the former node
can propagate to the latter through the relay node r , therefore establishing a simple
path (or Virtual Edge)(10) shown as a dashed line.

In the case of weighted networks, the simple paths may take into account the
cumulative effect of the respective weights. For instance, in case we had in Fig. 3
W (i, r ) = 3 and W (r, j) = 4, the weight of the simple path extending from i to j
would be W (i, j) = (3)(4) = 12.

The concept of simple path can be immediately extended by considering
further distances d from the reference node. Such an extension can be naturally
defined in terms of the weight matrix W representing the complex network of
interest (observe that W = K for weightless networks). Let �v(i) be a column
vector with N elements equal to zero, except that at the i-th position (recall that
i is the label of the reference node), which is assigned unit value. Let the vector
�v1(i) be defined as

�v1(i) = W �v(i), (3)

and let the generalized Kronecker delta �a = δ(�b) be the operator acting on a vector
�a in order to produce a vector �b such that each element b( j) of �b is one if and
only a( j) is different from zero, and zero otherwise. By applying such operator
on �v1(i) we obtain

�p1(i) = δ(�v1(i)). (4)
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Fig. 3. A generic situation in a complex network involving a reference node i (in black) and the
respectively defined hierarchical levels.

The set of immediate neighbors of i , i.e. R1(i), can now be obtained as corre-
sponding to the indices of the elements of �p1(i) which are equal to 1. For example,
we have for the situation depicted in Fig. 3 that R1(i = 8) = {2, 5, 7, 9, 12}.

The above matrix framework can be extended to any neighborhood of i by
introducing the vector �vd (i) defined as

�vd (i) = W d �v(i). (5)

The weights of the simple paths between i and the remainder network nodes
at distance d are given by the successive entries of �vd , i.e. Wd (i, j) = vd ( j).
Observe that the distance d between two nodes i and j is henceforth understood
as corresponding to the number of edges along the shortest path between those
two nodes.

The set of neighbors of i placed at distances varying from 0 to d from the
reference node i , henceforth represented as Bd (i) and referred to as the ball of
radius d centered at i , can be verified to correspond to the non-zero entries in the
vector �pd (i) defined as follows

�pd (i) = δ

(
d∑

j=1

�p j (i) + �v(i)

)
. (6)

For instance, the ball of radius 2 centered at i = 8 in Fig. 2 corresponds to
the whole network in that figure. Now, the set of network nodes which are exactly
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at distance d from the reference node i can be obtained as the unit entries in the
vector

�rd (i) = �pd (i) − �pd−1(i). (7)

The set obtained from the above vector has also been called(11) the ring of
radius d centered at i , being henceforth represented as Rd (i). Observe that the
ring of radius 2 centered at i = 8 in Fig. 2 is R2(8) = {1, 3, 4, 6, 10, 11, 13}.

The subnetwork defined by the nodes at a specific ring Rd (i), together with
the edges between them, is henceforth represented as γd (i). We are now ready
to define the hierarchical level d of a complex network as corresponding to the
nodes in γd (i) and the edges extending from such nodes and the nodes in γd+1(i).
The two hierarchical levels of nodes existing in the network shown in Fig. 2
are identified by the inner and outermost ellipsis, respectively. Observe that the
hierarchies d provide a radial reference frame or coordinate system which can be
used to partially identify nodes and edges with respect to the reference node i .
The concept o hierarchy in a complex network is also related to the concept of
roles(36) and the distance transform(28, 29) of the nodes in the original network �

with respect to the reference node.(11)

Observe that statistics of the number of hierarchical levels d while considering
several nodes in a complex network provide a valuable characterization of its
topology. Generally speaking, d tends do increase with the density of connections
up to a peak, decreasing afterwards. At the same time, as will become clear
along the remainder of this article, the more connected the network is, the less
hierarchical levels it tends to have. It should be also observed that algorithmic
implementation of hierarchy identification, such as those reported in refs. 10
and 11 (see also ref. 37), are typically more computationally efficient than the use
of the matrix arithmetic presented in this Section.

4. VIRTUAL HIERARCHICAL MEASUREMENTS

The concept of hierarchical level introduced above allows a natural and pow-
erful extension of traditional measurements such as the node degree and clustering
coefficient. This section defines such features as well as ancillary measurements
which can be used in order to obtain a more complete characterization of complex
networks. The considered measures can be generalized for weighted networks
taking some modifications as described along the measures. When considering
oriented graphs, a new network can be obtained retrieving only the In or Out
connections of each node.

The hierarchical node degree of a reference node i at distance d is henceforth
defined as corresponding to the number of edges extending between the nodes
in Rd (i) and Rd+1(i). This measurement is henceforth represented as kd (i). As
an example, in Fig. 2 we have that k0(8) = 5 (corresponding to the traditional
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node degree) and k1(8) = 8. Observe that the hierarchical node degree is not
averaged among the number of nodes in Rd (i). Actually, this measurement can be
understood as the traditional node degree where the reference node is understood
as corresponding to the ball Bd (i) (i.e. the nodes in this ball are merged into a
subsumed node). This measure can be extended to weighted networks by taking
the sum of the weight values for every connection between these nodes and the
nodes of the next level.

Let the number of edges in the subnetwork γd (i) be expressed as ed (i), and
the number of elements of the ring Rd (i) be represented as nd (i). The hierarchical
clustering coefficient of node i at distance d, hence ccd (i), can be obtained in
terms of the immediate generalization of Eq. (2)

ccd (i) = 2
ed (i)

nd (i)(nd (i) − 1)
. (8)

For node i = 8 in the simple network shown in Fig. 2 we have that cc1(8) =
0.3 and cc2(8) ≈ 0.19.

Other interesting hierarchical measurements which can be obtained with
respect to the reference node i and which can be used to diminish the degeneracy
of the node degree and clustering coefficient include the following:

Convergence ratio (Cd (i)): Corresponds to the ratio between the hierarchical node
degree of node i at distance d and the number of nodes in the ring at next level
distance, i.e.

Cd (i) = kd (i)

nd+1(i)
. (9)

This measurement quantifies the average number of edges received by
each node in the hierarchical level d + 1. We have necessarily that C0(i) = 1
for whatever node selected as the reference i . In the case illustrated in Fig. 2, we
have C0(8) = 1 and C1(8) = 8/7, indicating a low level of edge convergence
into the nodes in Rd (i).

Intra-ring degree (Ad (i)): This measurement is obtained by taking the average
among the degrees of the nodes in the subnetwork γd (i). Observe that only
those edges between the nodes in such a subnetwork are considered, therefore
overlooking the connections established by such nodes with the nodes in the
hierarchical levels at d − 1 and d + 1. For instance, we have for the situation
in Fig. 2 that A1(8) = 6/5 and A2(8) = 8/7. For weighted networks the value
of intra-ring is the average of weights of all nodes in such subnetwork.

Inter-ring degree (Ed (i)): The average of the number of connections between
each node in ring Rd (i) and those in Rd+1(i). For instance, for Fig. 2 we have
E0(8) = 5, E1(8) = 8/5 and E2(8) = 0. Observe that Ed (i) = kd (i)/nd (i).

Hierarchical common degree (Hd (i)): The average node degree among the nodes
in Rd (i), considering all edges in the original network. For Fig. 2 we have
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Table 1. The Hierarchical Measurements Considered in

the Current Article

ed (i) Hier. number of edges among the nodes in the ring Rd (i)
nd (i) Hier. number of nodes in the ring Rd (i)
kd (i) Hierarchical degree of node i at distance d
ccd (i) Hier. clustering coefficient of node i at distance d
Cd (i) Convergence rate at hierarchical level d
Ad (i) Intra-ring node degree of node i at distance d
Ed (i) Inter-ring node degree of node i at distance d
Hd (i) Hierarchical common degree of node i at distance d

H1(8) = 18/5 and H2(8) = 16/7. The hierarchical common degree expresses
the average node degree at each hierarchical level, indicating how the network
node degrees are distributed along the network hierarchies.

It is also interesting to eventually consider versions of the above described
measurements considering the ball Bd (i), and not the ring Rd (i). Table 1 sum-
marizes the hierarchical measurements reviewed/introduced in the current article,
all of which are defined with respect to one of the network nodes, identified by
i , taken as a reference and at a distance d from that node. Observe that most
measurements are averaged among the number of nodes in Rd (i), except the first
three features in Table 1.

5. EDGE DEGREE AND EDGE CLUSTERING COEFFICIENT

One important thing about the traditional node degree and clustering coef-
ficient is that these concepts have been defined with respect to a network node
and its immediate neighbors. It would be interesting to extend such concepts with
respect to network edges. The generalization of the node degree and clustering
coefficient to any subset of nodes in a complex network reported in ref. 11 provides
an immediate means to obtain the above extensions.

Such a generalization can be immediately obtained by considering more
general vectors �v(i) in the equations in the previous two sections. More specifi-
cally, instead of assigning the value one only to the vector element whose index
corresponds to the label of the reference node, we assign ones to the elements
whose indices correspond to the labels of all nodes in the subnetwork of interest.
For instance, in case we define the subnetwork γ as including the nodes {1, 11}
and respective edges in the network in Fig. 2, we have �v(γ ) = (1, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0)T. Let us obtain the ring centered at γ at distance 2. By applying
Eq. (5) we have

�v1(γ ) = (0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 11, 11)T
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and

�v2(γ ) = (4, 1, 1, 0, 1, 0, 12, 12, 11, 11, 22, 11, 11)T

and, through Eq. (6), we obtain

�p1(γ ) = (1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1)T

and

�p2(γ ) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T .

The vector specifying the ring centered at γ at distance d = 2 is now obtained
by using Eq. (7) as �r2(γ ) = �p2 − �p1 = (0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0)T , from
which we finally obtain R2(γ ) = {5, 7, 8, 9, 10}.

The extension of the hierarchical node degree and hierarchical clustering
coefficient to an edge (instead of a node) can now be easily obtained by first
identifying the two nodes i and j defining the edge of interest and making the
nodes in γ to correspond to those two nodes. The hierarchical node degree and
hierarchical clustering coefficient can be obtained by using immediate extensions
of their respective definitions.

6. ANALYTICAL RESULTS FOR RANDOM NETWORKS

This section presents a mean-field analytical investigation of the typical
values and behavior of the main measurements reviewed/introduced in the previous
sections of this work.

Consider the generic situation depicted in Fig. 3, including a reference node
i and the several respectively defined hierarchical levels, extending from 0 (corre-
sponding to the reference node) to d, and further. Recall that the subnetwork γd (i)
is the subgraph obtained by considering the nd (i) nodes at level d (i.e. the ring
Rd (i)) and the ed (i) edges among those nodes. It can be shown that the following
mean-field recursive approximation holds for a random network with overall mean
degree 〈k〉

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

nd (i) ≈ η(kd−1, N − Nd−1)

Nd (i) ≈ Nd (i) + nd (i)

kd (i) ≈
(

N − Cd (i)

N

) ⎛

⎝
∑

j∈Rd (i)

k j

⎞

⎠ nd (i)

(10)

where Nd (i) is the cumulative number of nodes from the hierarchical level 0 up
to level d (inclusive), i.e. Nd = ∑d

j=0 nd (i), and the function η(a, b) gives the
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average number of manners b objects can be taken, with repetition, to fill a slots.
Now, the average and variance of the hierarchical node degree of node i at distance
d can be respectively approximated as

E [kd (i)] ≈
(

N − Nd (i)

N

)
〈k〉 nd (i) (11)

Var {kd (i)} ≈
(

N − Nd (i)

N

)2

〈k〉 nd (i)2 (12)

Figures 4 show the hierarchical node degree for several combinations of 〈k〉
and N . It is clear from this figure that the hierarchical node degree curves are ap-
proximately symmetric with respect to the abscissa P of the respective peak value,
which is a consequence of the finite size of the considered networks. Actually, the
following three situations can be identified during the dynamic evolution of the
hierarchical node degree for a specific network node: (i) the hierarchical node
degree increases as more nodes imply links to more nodes; (ii) a peak is achieved
with abscissa P; and (iii) the node degree decreases because of the finite size of
the network, which implies the ‘saturation’ of the hierarchical expansion. Observe
also that higher connectivity, implied by large values of 〈k〉, tends to reduce the

Fig. 4. The hierarchical node degree for several configurations of 〈k〉 and N . Observe that such curves
are always characterized by a peak, which is a consequence if the finite size of the considered networks.
Observe also that increased connectivity, implied by larger values of 〈k〉 tends to reduce the number
of hierarchical levels in the network.



856 Costa and Silva

Fig. 5. The values of the abscissa of the peak hierarchical node degree for several values of Log(〈k〉)
and Log(N ).

value of P and, consequently, the hierarchical levels of the networks. Such an ef-
fect is usually accompanied by an increase of the heights of the respective curves,
in order to conserve the average node degree. As a matter of fact, it can be shown
that also important is the fact that the standard deviation tends to increase with the
values of the hierarchical node degree.

Figure 5 shows the values of P , obtained by simulations using the Eq. (12),
for several values of 〈k〉 and N . Observe that, for a fixed average degree 〈k〉, we
have that P ≈ cLog(N ), for some real constant c. It is clear from Fig. 5 that the
hierarchical levels are much more speedily reduced with the increase of 〈k〉 than
with the reduction of N , an effect which can also be appreciated from Fig. 4.

7. CHARACTERIZATION OF COMPLEX NETWORKS MODELS

In order to further illustrate the potential of the hierarchical measurements
discussed so far in this work, they have been used to characterize, through sim-
ulations, random, scale-free (i.e. Barabási-Albert – BA) and regular network
models.

The random networks are generated by selecting edges with uniform prob-
ability p. The BA networks are produced as described in ref. 3, i.e. starting with
m0 randomly interconnected nodes and adding new nodes with m edges which
are attached to the existing nodes with probability proportional to their respective
node degrees. The considered regular networks are characterized by each node be-
ing connected exactly to 8 other nodes. Two types of networks have been studied
in this article: one with border effects, where the nodes at its border have a lesser
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degree; and another without border effects, i.e. considering toroidal connections.
In both cases, the nodes are organized into an L × L array, and each internal
node (i.e. non-border node), specified by its position (x, y) in such an array, is
connected to its 8-neighbors (x − 1, y), (x + 1, y), (x − 1, y − 1), (x + 1, y − 1),
(x − 1, y + 1), (x + 1, y + 1), (x, y − 1), (x, y + 1). The random model assumes
〈k〉 = 15, 〈k〉 = 5 and 〈k〉 = 3, and the BA model considers 〈k〉 = 16, 〈k〉 = 6
and 〈k〉 = 4. These two models assume N = 10000. In the case of the regular
networks, N = 10000 (i.e. L = 100) and 〈k〉 = 8. Observe that the average node
degree of the regular network differs from those for the other two models as an
unavoidable consequence of the intrinsic topology of that network.

The remainder of this section presents the hierarchical measurements ob-
tained for each of the complex networks types described above. For the sake of
comprehensiveness, three instances of each model were considered respectively
to decreasing average node degree, namely k = 15, 5, and 3 for Radom Graph
Results; k = 16, 6, and 4 for Barabási-Albert model.

Figure 6 shows the hierarchical number of nodes (average ± standard devia-
tion) obtained for the considered network models, including three average degree
values in the case of the BA and random cases, while taking all nodes into account.
The asterisks indicate the position of the average shortest path between any pair
of nodes, which are included in order to provide a reference for the hierarchical
analysis. All curves are characterized by a peak, except for the regular graph with
no border effects. The values of the hierarchical number of nodes obtained for the
random models are more susceptible to the change of mean degree (i.e. Fig. 6a–c)
than those values obtained for the Barabási-Albert networks. Note that the hier-
archical number of nodes is related to the path-length distribution. For a decrease
from k = 16 to k = 6, the peak of the Barabási-Albert model shows a change of
only one hierarchical level, while in the Random model, decreasing from k = 15
to k = 5, such a displacement involves four levels. For a reduction from k = 5
to k = 3 (k = 6 to k = 4 for BA), the change was one level for Barabási-Albert,
and 3 levels for the random models. This is a direct consequence of the fact that
scale-free structures are less susceptible to the removal of random edges (same
as reducing the mean degree) than the random models. Hubs in BA model estab-
lish shortcuts between nodes, reducing the weight of other edges distances in the
average minimal distance. The regular networks without border effects yielded
hierarchical number of nodes which are linearly increasing, reflecting the basic
structure of such models. However, the regular networks with borders were charac-
terized by a wide peak and high variance of measurements. Interestingly, the peaks
obtained for the hierarchical number of nodes occur near the average shortest path
marked by the asterisks. Note that the last level with a non-zero value corresponds
to the graph diameter.(38)
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Fig. 6. Hierarchical number of nodes (average ± standard deviation) for all considered networks,
which are identified above each graph. Observe that most curves are characterized by a peak. The
average value of the shortes path between any two nodes is marked by an asterisk.

The values of hierarchical node degrees, shown in Fig. 7, are similar to the
respective measurements of hierarchical number of nodes shown in Fig. 6, except
for an expected offset of one hierarchical level to the left.

All curves obtained for the inter-ring degree, shown in Fig. 8, are monoton-
ically decreasing after the first hierarchical level. Again, the curves obtained for
the random networks are less sensitive to variations of the average degree than
those obtained for the Barabási-Albert model. The results for the random netwoks
show wider and smoother curves, while those obtained for Barabási-Albert tend
to be sharper and to concentrate on the left hand side, implying smaller peaks
abscissae which are identical for the three considered average degrees. Results
obtained for the Barabási-Albert cases also show a peak at the first hierarchical
level and present high variance, this is a consequence of the high chance of finding
a hub on that level. All models, except for the regular cases, are characterized by
presenting the peak of the curve to the left of the asterisk (i.e. the average shortest



Hierarchical Characterization of Complex Networks 859

Fig. 7. Hierarchical node degrees obtained for all the considered network models. The curves are
similar to those obtained for the hierarchical number of nodes, except for a expected offset of one
level.

path). It is also interesting to observe that although this measurement is closely
relate to the hierarchical degree, the curves obtained for these two features (i.e.
Figs. 7 and 8) are markedly different, in the sense that the curves of the hierarchi-
cal inter ring degree obtained for the random model no longer presents the peak
structure as observed in Fig. 7. The curves obtained for the regular networks are
also interesting, being characterized by an initial stage of steep decay followed by
a plateau which tends to decrease for higher hierarchical levels in the case of the
regular network with borders.

The results for intra-ring degree, shown in Fig. 9, are very similar to the
hierarchical number of nodes measurement, characterized by a peak, except for
regular networks, which exhibit a markedly different evolution resembling the
curves obtained for the inter-ring degree. Note that for regular graphs with no
border effects, the final decreasing part tends to decrease and saturate. The shape
of BA and Random curves are closely similar to those obtained for the hierarchical
number of nodes.
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Fig. 8. Inter ring degree values for the considered network models.

Figure 10 shows the values of hierarchical common degree for the considered
network models. These distributions are characterized by a decreasing curve after
the first level, excepted for the regular graphs with no border effects. Generally,
these curves are similar to those obtained for the inter-ring degrees, except that
the present curves are wider. Another observation is that the average hierarchical
common degree tends to be higher at the initial hierarchical levels, which is a
consequence of the fact that the largest hubs present in the BA model tend to
be reached sooner, providing bypasses to the other nodes and therefore reducing
the peak abscissae and number of hierarchical levels. This is the main reason
why all peaks in the BA networks tend to be displaced to the left hand side than
those in the random networks. Like with the other measurements, it can be that
the positions of the peaks along the curves are less affected by variations of the
average node degree in the cases of the BA models. The curves for random and
regular models resulted similar and characterized by an interval of nearly constant
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Fig. 9. Intra Ring Degree values for the considered network models.

values at the intermediate part of the curves. This is a direct consequence of the
smaller variance of traditional node degrees in those two models as compared to
the higher variance of the BA cases.

Because the regular models have a fixed number of connections for each
node, the common degree measurement results in a constant curve with value
k = 8 for the network with border effects. As some nodes (i.e. those at the border)
do not have exactly the same degree, the last levels have a smooth decrease but
higher standard deviation.

The curves of hierarchical clustering coefficients resulted the most distinct
among the three considered networks and have the higher standard deviations,
as shown in Fig. 11. Also involving an intermediate constant interval, the curves
obtained for the random models correspond to the smallest clustering coefficients
among the models. Therefore, the nodes at each ring of those networks are char-
acterized by low interconnectivity. The hierarchical clustering coefficient curves
obtained for the BA case, present much higher values and involve sharper peaks of
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Fig. 10. Hierarchical Common Degree measures with the respective ± standard deviations obtained
for the considered models.

connectivity, tending to present another peak along the last levels (see Fig. 11b,c).
The hierarchical clustering coefficient obtained for the regular networks has a
monotonically decreasing behavior, with values which start higher than those of
the two other considered models. The monotonic decay observed for this case (i.e.
regular networks) is explained by the fact that both the number of nodes and edges
increase linearly along successive hierarchical levels for that model (see Eq. (8)).
Note that the regular model with and without border are similar.

The convergence ratios obtained for each of the considered network models
are shown in Fig. 12. These curves are characterized by similar behavior among
themselves with nearly constant value at the first levels and a peak at the last levels
(except for the regular models), along which the hierarchical expansion tends to
saturate, i.e. after the peak P is reached. Note also that sharper peaks tend to be
obtained for high values of k. The positions of the peaks are near the average
shortest paths.
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Fig. 11. Hierarchical Clustering Coefficient Degree measurements. Note the higher values of standard
deviantion relatively to the other measurements.

The convergence ratio curves obtained for the regular networks are also
qualitatively similar to those obtained for the other models, but the bordered
graphs lack the peak and have a smooth decay along the last levels.

Interestingly, among all considered measurements, it was the hierarchical
common degrees and hierarchical clustering coefficients which provided the most
distinctive shapes for each respective network model. Therefore, such measure-
ments stand out as particularly promising subsidies for, together with the log-log
node degree density, identifying the category of the network under study. Such a
possibility is illustrated in the following section.

8. APPLICATION TO REAL NETWORKS

The above described hierarchical measurements have also been applied to
characterize three complex networks obtained from real data. These real networks
include: a Edinburgh Associative Thesaurus network,(39) the 1997 US Airports
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network(40) and a protein-protein interaction network.(41) The Edinburgh(Word)
graph is a empirical association network created as a set of collected words from
human subjects who are requested to enter words that first come to their mind after
seeing a stimulus word. All the responses are presented with similar frequency.
The detailed procedures of the creation of Edinburgh graphs can be seen in ref. 39.
This network has 23219 nodes and k � 14 and is oriented and weighted. A similar
network has been considered in ref. 42, while a preliminary characterization of
such a type of networks by using the hierarchical node degree has been reported
in ref. 10. The protein-protein interaction graph(YEAST), described in ref. 41, has
2361 nodes with k � 3 where a node represents a protein and the edge a interaction
between the two respective proteins. The US Airport network is a compilation of
flights between the airports of United States in 1997, where a node represents an
airport and the edge a flight between the two airports. This network has a total of
332 nodes (airports) and k � 6.4. All the considered real graphs were compared to
random and BA models with similar node degrees (for the sake of space economy,
not all these graphs are shown in Section Characterization of Complex Networks
Models).

The results for the curves of hierarchical number of nodes and node degrees
are similar as seen in Figs. 13 and 14. Also, no significant differences were
observed between these results and those obtained for the respective random or
BA simulated networks.

More interesting results have been obtained for the inter-ring degrees, shown
in Fig. 15 (inter-ring distribution). These curves were observed to be more similar
to the respective simulated Barabási-Albert curves. In fact, all considered real
networks are substantially similar to scale-free networks, being characterized by
a high variance of node degrees and the presence of hubs.

The intra ring degrees of the real networks are shown in Fig. 16 Interestingly,
the curves obtained for the airport (b) and yeast (c) present their respective peaks
to the left of the average shortest path (the asterisk position), while in the BA
models the peaks tend to coincide with the asterisks as obtained for the word
network.

Figure 17 shows the measurements of hierarchical common degree. The
airport (b) and yeast (c) networks curves have a similar behavior to those obtained
for the respective BA curves, with a peak at the first hierarchical level and a decay.
However the word network (a) have a mixed behavior, beginning with a increasing
curve like in a BA model, but ending with a convex decay like that typically
observed in random networks.

The clustering coefficient measurements, shown in Fig. 18, substantiate the
adherence of the real networks with respective BA simulated models. Another
interesting result which can be inferred from this figure regards the fact that the
hierarchical clustering coefficients are wider and higher for the word (a) than for
the respective BA simulations.
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Fig. 12. Convergence Ratio measurements for the considered networks.

Figure 19 shows the convergence ratio measurement values, which yielded
the most different curves among the three real networks and among these and
the respective models. The curve for the word network (a) is more similar to
the BA and random model, being characterized by a low plateau followed by a
peak and an abruptly decrease along the last levels. Different curve profiles have
been obtained for the airport (b) and yeast curves (c). The yeast curve presents
a wider peak, whose position falls near the center of the distribution. The peak
of curve obtained for the airport network resulted displaced to the left hand side,
far away from the average shortest path. This is a consequence of the fact that,
differently of what is obtained for the yeast, the hubs are reached after just a
few hierarchical levels while starting from most nodes. Indeed, we have verified
experimentally that the position and width of the peak of the convergence ratio is
ultimately defined by the distribution of hubs along the hierarchies after starting
from individual nodes. Therefore, the relatively narrow peak near the intermediate
hierarchical levels obtained for the word network indicates that the hubs in this
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Fig. 13. Hierarchical Number of Nodes obtained for the real networks. (a) Edinburgh associative
thesaurus network. (b) 1997 US Airports network. (c) Protein-Protein interaction network (Yeast).

Fig. 14. Hierarchical Node Degree distribution along hierarchical levels, same results from Number
of Nodes.
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Fig. 15. Inter Ring Degree values for real and generated graphs.

Fig. 16. Intra Ring Degree measurements obtained for the considered networks.
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Fig. 17. Hierarchical Common Degree Coefficient of real networks.

structure are found, in average, after 3 to 5 hierarchical levels. Although also nar-
row, the peak of the airport network results in the first levels, where most hubs are
concentrated. Finally, the wider peak obtained for the yeast network is a conse-
quence of the fact that the hubs are distributed more evenly along the hierarchical
levels.

9. NODE CATEGORIZATION THROUGH HIERARCHICAL

CLUSTERING

Another possibility for analysis of complex network allowed by the consid-
eration of hierarchical measurements is the classification of individual nodes into
similar groups. In order to illustrate such a potential for the characterization of
nodes, two complex network are considered, a Barabási-Albert model (generated
with N = 332 nodes and k � 6 edges) and the airport network with 332 nodes
and k � 6.4 edges considered in the last section. This analysis focuses on the clus-
tering coefficient measurement, which is obtained for all nodes of such networks.
Only the hierarchical levels up to 5 are considered in this example (the use of
additional levels tended to reduce the specificity of the obtained measurements in
the case of the real networks considered in this section).

The hierarchical clustering coefficients are calculated as usual and supplied to
a hierarchical clustering method,(34) namely an agglomerative algorithm, resulting



Hierarchical Characterization of Complex Networks 869

Fig. 18. Hierarchical Clustering Coefficient measures.

Fig. 19. Convergence Ratio Degree of real networks.



870 Costa and Silva

Fig. 20. Dendrogram obtained for the BA model considering the hierarchical clustering coefficients
of the nodes up to hierarchical level 5. Starting from the righthand side of the tree, the nodes are
progressively merged into clusters in terms of their similarity.

Fig. 21. Dendrogram obtained for the airport network considering the hierarchical clustering coeffi-
cients of the nodes up to hierarchical level 5.
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Fig. 22. Graphs of the average ± standard deviation of the hierarchical clustering coefficient obtained
for the BA model. Each graph corresponds to the clusters of nodes obtained in the four first hierarchical
levels of the dendrogram in Figure 23.
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Fig. 23. Graphs of the average ± standard deviation of the hierarchical clustering coefficient obtained
for the airport network.
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in the trees (also called dendrograms) of measurements shown in Figs. 20 and 21,
respectively to the BA and airport networks. For the sake of better visualization,
only the four first hierarchical levels are shown in these figures. The x-axes in these
two three refer to the similarity between nodes. Starting at the right hand side of
the tree, the nodes are merged with basis on the similarity of their hierarchical
clustering coefficients, yielding the taxonomical categorization of the nodes into
meaningful clusters corresponding to each branching point in the tree. The y-axes
express the size the clusters at the third hierarchical level. For instance, the cluster
at the top of Fig. 20 contains substantially less nodes than the third cluster from
the bottom of the figure.

Figures 22 and 23 show the graphs of average ± standard deviation of the
hierarchical clustering coefficients obtained at each respective level in the den-
drograms. The mean degree and percentage of nodes with respect to the whole
network for each cluster are given above each graph. Unlike the dendrograms in
Figs. 20 and 21, the x-axes of the trees in Figs. 22 and 23 do not consider the level
of similarity between the groups, which is done for the sake of better visualization
of the graphs obtained for each cluster of nodes. Starting from the whole network
cluster at the right-hand side of the tree, we can observe the progressive division
of the node hierarchical signatures in terms of subclasses sharing the basic pat-
terns of hierarchical clustering coefficient shown in the respective graphs. Such a
taxonomical characterization of the nodes into subclasses provides substantially
more discrimination and characterization than the graphs of average ± standard
deviation obtained considering the whole network such as those discussed in the
previous section. This enhanced potential of node discrimination and characteri-
zation provided by the dendrograms are particularly useful in the case of networks
exhibiting the small world property, as such cases tend to produce hierarchical
signatures extending over relatively few hierarchical levels.

10. CONCLUDING REMARKS

This article has addressed, in a didactic and comprehensive fashion, how a
set of hierarchical measurements can be used for the characterization of important
topological properties of complex networks. Motivated by the concept of extended
neighborhoods and distances, the identification of hierarchical levels along the net-
work, with reference to each of its nodes, allows the definition of a series of useful
and informative hierarchical measurements of the network topology, including
hierarchical extensions of the traditional node degree and clustering coefficient
measurements. The novel concepts of inter and intra-ring degrees, convergence
ratio, edge degree and edge clustering coefficient, as well as their hierarchical
versions, were also introduced here in terms of the subnetwork generalization
described in ref. 11.
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It has been shown, both analytically and through simulations, that the hierar-
chical node degree of a random network has a typical shape involving a limited
number of hierarchical levels while a peak is observed at its intermediate portion,
which is a consequence of the finite size of the considered networks. A similar
dynamics was experimentally identified for scale-free and regular network mod-
els. It was also shown, through simulations, that the suggested set of hierarchical
measurements provided a wealthy of information about the topological structure
of the considered models (namely random, scale-free and regular), allowing the
identification of a number of interesting properties specific to each of those models.
Of particular interest is the discriminative potential of the hierarchical common
degree and hierarchical clustering coefficient. The potential of the reported set
of hierarchical measurements was further illustrated with respect to three real
networks: word associations, airport connections and protein-protein interactions.
The comparison of the hierarchical measurements obtained for these three net-
works with respective random, regular and BA models with the same number
of nodes and similar node degree indicated that, except for a few measurements
(specific to each model), all the three real networks were most similar to the BA
models. In the case of the word associations network, some measurements (i.e.
hierarchical common degree and inter-ring degree) yielded hierarchical curves
which were similar to random along some parts and similar to BA at other parts.
This network was also verified to present the convergence ratio most similar to that
of a respective BA model. The concentration of higher values of convergence ratio
at the left hand side of the curves obtained for the airport network also confirmed
the fact that the hubs in this network are reached much faster than all the other
networks considered in this article. Contrariwise, the convergence ratio values
obtained for the protein-protein interaction network indicated that the hubs in this
real network are more evenly spaces one another. As a matter of fact, the conver-
gence ratio resulted in the most informative of the hierarchical measurements as
far as the analysis of the three real models was concerned. This is a consequence
of the fact that the presence of a hub at a given hierarchical level tend to strongly
affect the convergence ratio at that level.

Finally, the current article also proposed and illustrated the possibility to use
the enhanced information provided by the set of hierarchical measurements in
order to organize the nodes of a network into a taxonomy reflecting the similarities
between the nodes connectivity. Such a methodology is particularly promising
because the obtained taxonomy can be used to better understand the main classes
of nodes present in a given complex network, i.e. those classes obtained at the
higher levels of the taxonomy. Indeed, while the limited number of hierarchical
levels present in small world networks such as random and BA models constrain
the potential of the hierarchical measurements for the discrimination between such
models, the consideration of the main obtained classes of nodes has been verified
to provide further discrimination between the compared networks.
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A series of possible future investigations has been motivated by the results
reported in this article. First, it would be interesting to assess in a systematic
fashion, and by using multivariate statistical analysis and hypothesis tests, the
potential of each measurement, as well as their combinations, for discriminating
the possible class of a given network. Another issue of particular relevance regards
the identification and preservation of hubs considering not only the immediate
neighbors of a node, but of the neighbors accumulated along growing hierarchical
levels. While such a possibility has been preliminary considered in ref. 11, it
would be interesting to consider the preservation of hubs as an increasing number
of hierarchical levels is taken into account. Such a study is under development
with respect to protein-protein association networks and related results should be
futurely presented. Another study which can complement the results described
in the current work involves the consideration of several types of small-world
networks. Finally, it would be interesting to apply the hierarchical measurements
for the characterization of several other real networks such as protein-protein
interaction, internet, social connections, to name but a few.
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